Tag: Reinforcement Learning

AI Technology

Get a Grip! Berkeley Targets Dexterous Manipulation Using Deep RL

UC Berkeley researchers have published a paper demonstrating how Deep Reinforcement Learning can be used to control dexterous robot hands for complicated tasks. Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations proposes a low-cost and high-efficiency control method that uses demonstration and simulation techniques to accelerate the learning process.

AI Technology

Harvard & University of Toronto Researchers Apply Deep Generative Models to Inverse Molecular Design

Benjamin Sanchez-Lengeling from Harvard University and Alán Aspuru-Guzik from the University of Toronto have successfully applied machine learning models to speed up the materials discovery process. Their paper Inverse molecular design using machine learning: Generative models for matter engineering was published July 27 in Science Vol. 361.