Tag: NLP

AI Machine Learning & Data Science Nature Language Tech Research

LinkedIn Study Applies Deep NLP to Improve Search Systems

A LinkedIn research team evaluates deep natural language processing (NLP) on various representative search engine tasks to provide insights for the development of industry search engines.

AI Machine Learning & Data Science Nature Language Tech Popular Research

Google Researchers Enable Transformers to Solve Compositional NLP Tasks

A Google Research team explores the design space of Transformer models in an effort to enable deep learning architectures to solve compositional tasks. The proposed approach provides models with inductive biases via design decisions that significantly impact compositional generalization, and achieves state-of-the-art results on the COGS and PCFG composition benchmarks.

AI Machine Learning & Data Science Nature Language Tech Research

Google’s H-Transformer-1D: Fast One-Dimensional Hierarchical Attention With Linear Complexity for Long Sequence Processing

A Google Research team draws inspiration from two numerical analysis methods — Hierarchical Matrix (H-Matrix) and Multigrid — to address the quadratic complexity problem of attention mechanisms in transformer architectures, proposing a hierarchical attention scheme that has linear complexity in run time and memory.

AI Machine Learning & Data Science Nature Language Tech Research

Melbourne U, Facebook & Twitter Expose Novel Numerical Errors in NMT Systems

A research team from the University of Melbourne, Facebook AI, and Twitter Cortex proposes a black-box test method for assessing and debugging the numerical translation of neural machine translation systems in a systematic manner. The approach reveals novel types of errors that are general across multiple state-of-the-art translation systems.

AI Machine Learning & Data Science Research Share My Research

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT is a deep Transformer network architecture that incorporates clinical domain knowledge from a clinical Metathesaurus in order to build ‘semantically enriched’ contextual representations that will benefit from both the contextual learning and domain knowledge.