Category: Nature Language Tech

AI Machine Learning & Data Science Nature Language Tech Research

Adobe’s UDoc Captures Cross-Modal Correlations in a Unified Pretraining Framework to Improve Document Understanding

In the new paper Unified Pretraining Framework for Document Understanding, an Adobe Research and Adobe Document Cloud team presents a unified pretraining framework for document understanding that enables cross-modal connections, relevant information highlighting in both visual and textual modalities, and cross-modal connections. UDoc achieves impressive performance on various downstream tasks.

AI Machine Learning & Data Science Nature Language Tech Research

Training Compute-Optimal Large Language Models: DeepMind’s 70B Parameter Chinchilla Outperforms 530B Parameter Megatron-Turing

In the new paper Training Compute-Optimal Large Language Models, a DeepMind research team posits that current large language models are significantly undertrained and, based on empirical outcomes of over 400 training runs, proposes three predictive approaches for optimally setting model size and training duration.

AI Machine Learning & Data Science Nature Language Tech Research

Google, NYU & Maryland U’s Token-Dropping Approach Reduces BERT Pretraining Time by 25%

In the new paper Token Dropping for Efficient BERT Pretraining, a research team from Google, New York University, and the University of Maryland proposes a simple but effective “token dropping” technique that significantly reduces the pretraining cost of transformer models such as BERT without hurting performance on downstream fine-tuning tasks.

AI Machine Learning & Data Science Nature Language Tech Research

Google & IDSIA’s Block-Recurrent Transformer Dramatically Outperforms Transformers Over Very Long Sequences

A team from Google Research and the Swiss AI Lab IDSIA proposes the Block-Recurrent Transformer, a novel long-sequence processing approach that has the same computation time and parameter count costs as a conventional transformer layer but achieves significant perplexity improvements in language modelling tasks over very long sequences.

AI Machine Learning & Data Science Nature Language Tech Research

Microsoft & NVIDIA Leverage DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest Monolithic Language Model

A research team from Microsoft and NVIDIA leverages the NVIDIA Megatron-LM and Microsoft’s DeepSpeed to create an efficient and scalable 3D parallel system that combines data, pipeline, and tensor-slicing based parallelism, achieving superior zero-, one-, and few-shot learning accuracies and new state-of-the-art results on NLP benchmarks.

AI Machine Learning & Data Science Nature Language Tech Research

Sapienza U & OpenAI Propose Explanatory Learning to Enable Machines to Understand and Create Explanations

A research team from Sapienza University and OpenAI introduces an explanatory learning procedure that enables machines to understand existing explanations from symbolic sequences and create new explanations for unexplained phenomena, and further proposes Critical Rationalist Network (CRN) models for discovering explanations for novel phenomena.

AI Machine Learning & Data Science Nature Language Tech Research

Peng Cheng Laboratory & Baidu Release PCL-BAIDU Wenxin: The World’s First Knowledge-Enhanced 100-Billion-Scale Pretrained Language Model

Peng Cheng Laboratory (PCL) and Baidu release PCL-BAIDU Wenxin, the world’s first knowledge-enhanced 100-billion-scale pretrained language model and the largest Chinese-language monolithic model with 260 billion parameters. PCL-BAIDU Wenxin achieves state-of-the-art results on more than 60 tasks and significantly advances more than 30 benchmarks for zero-shot and few-shot learning.

AI Machine Learning & Data Science Nature Language Tech Research

Introducing MetaICL: A Language Model Meta-Training Framework for Few-Shot In-Context Learning

A research team from the University of Washington, Facebook AI Research and the Allen Institute for AI introduces Meta-training for InContext Learning (MetaICL), a new meta-training framework for few-shot learning where an LM is meta-trained to learn in-context — conditioning on training examples to recover the task and make predictions.

AI Machine Learning & Data Science Nature Language Tech Popular Research

Mention Memory: Incorporating Factual Knowledge From Various Sources Into Transformers Without Supervision

A research team from the University of Southern California and Google proposes TOME, a “mention memory” approach to factual knowledge extraction for NLU tasks. A transformer model with attention over a semi-parametric representation of the entire Wikipedia text corpus, TOME can extract information without supervision and achieves strong performance on multiple open-domain question answering benchmarks.

AI Machine Learning & Data Science Nature Language Tech Research

NYU & UNC Reveal How Transformers’ Learned Representations Change After Fine-Tuning

In the paper Fine-Tuned Transformers Show Clusters of Similar Representations Across Layers, a research team from New York University and the University of North Carolina at Chapel Hill uses centered kernel alignment (CKA) to measure the similarity of representations across layers and explore how fine-tuning changes transformers’ learned representations.

AI Machine Learning & Data Science Nature Language Tech Research

MIT’s Automatic Data-Driven Media Bias Measurement Method Achieves Human-Level Results

MIT researchers present an automated, objective and transparent data-driven method for measuring media bias. The study analyses roughly a million articles from about a hundred newspapers for bias on various news topics, maps the newspapers into a two-dimensional media bias landscape, and shows that the data-driven results agree well with human-judgement classifications.

AI Machine Learning & Data Science Nature Language Tech Research

Apple Neural TTS System Study: Combining Speakers of Multiple Languages to Improve Synthetic Voice Quality

An Apple research team explores multiple architectures and training procedures to develop a novel multi-speaker and multi-lingual neural TTS system. The study combines speech from 30 speakers from 15 locales in 8 languages, and demonstrates that for the vast majority of voices, such multi-lingual and multi-speaker models can yield better quality than single speaker models.

AI Machine Learning & Data Science Nature Language Tech Popular Research

Google Researchers Enable Transformers to Solve Compositional NLP Tasks

A Google Research team explores the design space of Transformer models in an effort to enable deep learning architectures to solve compositional tasks. The proposed approach provides models with inductive biases via design decisions that significantly impact compositional generalization, and achieves state-of-the-art results on the COGS and PCFG composition benchmarks.

AI Machine Learning & Data Science Nature Language Tech Research

Google’s H-Transformer-1D: Fast One-Dimensional Hierarchical Attention With Linear Complexity for Long Sequence Processing

A Google Research team draws inspiration from two numerical analysis methods — Hierarchical Matrix (H-Matrix) and Multigrid — to address the quadratic complexity problem of attention mechanisms in transformer architectures, proposing a hierarchical attention scheme that has linear complexity in run time and memory.

AI Machine Learning & Data Science Nature Language Tech Research

Melbourne U, Facebook & Twitter Expose Novel Numerical Errors in NMT Systems

A research team from the University of Melbourne, Facebook AI, and Twitter Cortex proposes a black-box test method for assessing and debugging the numerical translation of neural machine translation systems in a systematic manner. The approach reveals novel types of errors that are general across multiple state-of-the-art translation systems.

AI Machine Learning & Data Science Nature Language Tech Research

Google Researchers Merge Pretrained Teacher LMs Into a Single Multilingual Student LM Via Knowledge Distillation

A Google Research team proposes MergeDistill, a framework for merging pretrained teacher LMs from multiple monolingual/multilingual LMs into a single multilingual task-agnostic student LM to leverage the capabilities of the powerful language-specific LMs while still being multilingual and enabling positive language transfer.

AI Machine Learning & Data Science Nature Language Tech Research

Study Shows Transformers Possess the Compositionality Power for Mathematical Reasoning

A research team from UC Davis, Microsoft Research and Johns Hopkins University extends work on training massive amounts of linguistic data to reveal the grammatical structures in their representations to the domain of mathematical reasoning, showing that both the standard transformer and the TP-Transformer can compose the meanings of mathematical symbols based on their structured relationships.