Tag: Neural Networks

AI Technology

Global Minima Solution for Neural Networks?

New research from Carnegie Mellon University, Peking University and the Massachusetts Institute of Technology shows that global minima of deep neural networks can been achieved via gradient descent under certain conditions. The paper Gradient Descent Finds Global Minima of Deep Neural Networks was published November 12 on arXiv.

AI Technology

Nanjing University Team Introduces Multi-layered Gradient Boosting Decision Trees (mGBDTs)

GcForest, a decision tree ensemble approach that is much easier to train than deep neural networks, has received a lot of attention from researchers since it was introduced by Prof. Zhihua Zhou and his student Ji Feng last year. Based on their previous work, Zhou, Feng and Nanjing University colleague Yang Yu have now proposed Multi-layered Gradient Boosting Decision Trees (mGBDTs).