Tag: Language model

AI Machine Learning & Data Science Research

Intelligent Mutations in Genetic Programming: OpenAI Proposes Evolution Through Large Models

In the new paper Evolution Through Large Models, an OpenAI research team shows that large-scale language models (LLMs) trained to generate modern programming language can suggest intelligent mutations that can be leveraged to realize dramatically improved mutation operators for genetic programming.

AI Machine Learning & Data Science Research

444 Authors From 132 Institutions Release BIG-bench: A 204-Task ‘Extremely Difficult and Diverse’ Benchmark for Large Language Models

In the new paper Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of Language Models, 444 authors from 132 institutions introduce Beyond the Imitation Game (BIG-bench), a large-scale, extremely difficult and diverse benchmark that includes 204 tasks for predicting the potentially transformative effects of large language models.

AI Computer Vision & Graphics Machine Learning & Data Science Research

Google Brain’s UViM: A Unified Approach for Modelling Diverse Vision Tasks Without Modifications

In the new paper UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes, a Google Brain research team proposes UViM, a unified approach that leverages language modelling and discrete representation learning to enable the modelling of a wide range of computer vision tasks without task-specific modifications.

AI Machine Learning & Data Science Nature Language Tech Research

Fact Tracing in LMs: MIT & Google Dataset and Benchmark Track Learned Knowledge Back to the Training Data

In the new paper Tracing Knowledge in Language Models Back to the Training Data, a team from MIT CSAIL and Google Research proposes a benchmark for tracing language models’ assertions to the associated training data, aiming to establish a principled ground truth and mitigate high compute demands for large neural language model training.

AI Machine Learning & Data Science Nature Language Tech Research

Tokyo U & Google Brain Train Large Language Models as Zero-Shot Reasoners

In the new paper Large Language Models are Zero-Shot Reasoners, a research team from the University of Tokyo and Google Brain demonstrates that large language models (LLMs) can become good zero-shot reasoners through the addition of a simple prompt — “Let’s think step by step” — that elicits a step-by-step thinking process before each question is answered. Their Zero-shot-CoT model achieves huge performance gains compared to the zero-shot baseline.

AI Machine Learning & Data Science Research

AI21 Labs’ Augmented Frozen Language Models Challenge Conventional Fine-Tuning Approaches Without Sacrificing Versatility

In the new paper Standing on the Shoulders of Giant Frozen Language Models, AI21 Labs researchers propose three novel methods for learning small neural modules that specialize a frozen language model to different tasks. Their compute-saving approach outperforms conventional frozen model methods and challenges fine-tuning performance without sacrificing model versatility.

AI Machine Learning & Data Science Research

Google Builds Language Models with Socratic Dialogue to Improve Zero-Shot Multimodal Reasoning Capabilities

In the new paper Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language, Google researchers argue that the diversity of different foundation models is symbiotic and that it is possible to build a framework that uses structured Socratic dialogue between pre-existing foundation models to formulate new multimodal tasks as a guided exchange between the models without additional finetuning.

AI Machine Learning & Data Science Research

OpenAI’s Statement Curriculum Learning Method Cracks High School Olympiad Level Mathematics Problems

An OpenAI research team presents an expert iteration-based neural theorem prover capable of solving a curriculum of increasingly difficult mathematical problems (such as high-school olympiad-level problems) from a set of formal statements of sufficiently varied difficulty and without the need for associated ground-truth proofs.

AI Machine Learning & Data Science Nature Language Tech Research

Microsoft & NVIDIA Leverage DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest Monolithic Language Model

A research team from Microsoft and NVIDIA leverages the NVIDIA Megatron-LM and Microsoft’s DeepSpeed to create an efficient and scalable 3D parallel system that combines data, pipeline, and tensor-slicing based parallelism, achieving superior zero-, one-, and few-shot learning accuracies and new state-of-the-art results on NLP benchmarks.

AI Machine Learning & Data Science Research

Counterfactual Memorization in Language Models: Distinguishing Rare from Common Memorization

A team from Google Research, University of Pennsylvania and Cornell University proposes a principled perspective to filter out common memorization for LMs, introducing “counterfactual memorization” to measure the expected change in a model’s prediction and distinguish “rare” (episodic) memorization from “common” (semantic) memorization in neural LMs.

AI Machine Learning & Data Science Research

DeepMind’s RETRO Retrieval-Enhanced Transformer Retrieves from Trillions of Tokens, Achieving Performance Comparable to GPT-3 With 25× Fewer Parameters

A DeepMind research team proposes RETRO (Retrieval-Enhanced Transformer), an enhanced auto-regressive language model that conditions on document chunks retrieved from a large corpus and achieves performance comparable to GPT-3 and Jurassic-1 on the Pile dataset while using 25× fewer parameters.

AI Machine Learning & Data Science Research

Baidu’s Knowledge-Enhanced ERNIE 3.0 Pretraining Framework Delivers SOTA NLP Results, Surpasses Human Performance on the SuperGLUE Benchmark

A research team from Baidu proposes ERNIE 3.0, a unified framework for pretraining large-scale, knowledge-enhanced models that can easily be tailored for both natural language understanding and generation tasks with zero-shot learning, few-shot learning or fine-tuning, and achieves state-of-the-art results on NLP tasks.

AI Machine Learning & Data Science Research

NYU, Facebook & CIFAR Present ‘True Few-Shot Learning’ for Language Models Whose Few-Shot Ability They Say Is Overestimated

A research team from New York University, Facebook AI, and a CIFAR Fellow in Learning in Machines & Brains raise doubts regarding large-scale pretrained language models’ few-shot learning abilities. The researchers re-evaluate such abilities with held-out examples unavailable, which they propose constitutes “true few-shot learning.”

AI Machine Learning & Data Science Popular Research

NVIDIA, Stanford & Microsoft Propose Efficient Trillion-Parameter Language Model Training on GPU Clusters

A research team from NVIDIA, Stanford University and Microsoft Research propose a novel pipeline parallelism approach that improves throughput by more than 10 percent with a comparable memory footprint, showing such strategies can achieve high aggregate throughput while training models with up to a trillion parameters.