Category: Popular

AI Machine Learning & Data Science Popular Research

Game On! MIT, Allen AI & Microsoft Open-Source a Suite of AI Programming Puzzles

A research team from MIT, Allen Institute for AI and Microsoft Research open-sources Python Programming Puzzles (P3), a novel programming challenge suite that captures the essence of puzzles and can be used to teach and evaluate an AI’s programming proficiency.

AI Machine Learning & Data Science Popular Research

ETH Zürich Identifies Priors That Boost Bayesian Deep Learning Models

A research team from ETH Zürich presents an overview of priors for (deep) Gaussian processes, variational autoencoders and Bayesian neural networks. The researchers propose that well-chosen priors can achieve theoretical and empirical properties such as uncertainty estimation, model selection and optimal decision support; and provide guidance on how to choose them.

AI Machine Learning & Data Science Popular Research

Bronstein, Bruna, Cohen and Velickovic Leverage the Erlangen Programme to Establish the Geometric Foundations of Deep Learning

Twitter Chief Scientist Michael Bronstein, Joan Bruna from New York University, Taco Cohen from Qualcomm AI and Petar Veličković from DeepMind publish a paper that aims to geometrically unify the typical architectures of CNNs, GNNs, LSTMs, Transformers, etc. from the perspective of symmetry and invariance to build an “Erlangen Programme” for deep neural networks.

AI Machine Learning & Data Science Popular Research

Toward a New Generation of Neuromorphic Computing: IBM & ETH Zurich’s Biologically Inspired Optimizer Boosts FCNN and SNN Training

IBM and ETH Zurich researchers make progress in reconciling neurophysiological insights with machine intelligence, proposing a novel biologically inspired optimizer for artificial (ANNs) and spiking neural networks (SNNs) that incorporates synaptic integration principles from biology. GRAPES (Group Responsibility for Adjusting the Propagation of Error Signals) leads to improvements in the training time convergence, accuracy and scalability of ANNs and SNNs.

AI Machine Learning & Data Science Popular Research

NVIDIA, Stanford & Microsoft Propose Efficient Trillion-Parameter Language Model Training on GPU Clusters

A research team from NVIDIA, Stanford University and Microsoft Research propose a novel pipeline parallelism approach that improves throughput by more than 10 percent with a comparable memory footprint, showing such strategies can achieve high aggregate throughput while training models with up to a trillion parameters.