Category: Popular

AI Computer Vision & Graphics Machine Learning & Data Science Popular Research

A Leap Forward in Computer Vision: Facebook AI Says Masked Autoencoders Are Scalable Vision Learners

In a new paper, a Facebook AI team advances autoencoding methods to the computer vision field and shows that masked autoencoders (MAE) are scalable self-supervised learners.

AI Machine Learning & Data Science Nature Language Tech Popular Research

Mention Memory: Incorporating Factual Knowledge From Various Sources Into Transformers Without Supervision

A research team from the University of Southern California and Google proposes TOME, a “mention memory” approach to factual knowledge extraction for NLU tasks. A transformer model with attention over a semi-parametric representation of the entire Wikipedia text corpus, TOME can extract information without supervision and achieves strong performance on multiple open-domain question answering benchmarks.

AI Machine Learning & Data Science Nature Language Tech Popular Research

Google Researchers Enable Transformers to Solve Compositional NLP Tasks

A Google Research team explores the design space of Transformer models in an effort to enable deep learning architectures to solve compositional tasks. The proposed approach provides models with inductive biases via design decisions that significantly impact compositional generalization, and achieves state-of-the-art results on the COGS and PCFG composition benchmarks.

AI Computer Vision & Graphics Machine Learning & Data Science Popular Research

Facebook & UC Berkeley Substitute a Convolutional Stem to Dramatically Boost Vision Transformers’ Optimization Stability

A research team from Facebook AI and UC Berkeley finds a solution for vision transformers’ optimization instability problem by simply using a standard, lightweight convolutional stem for ViT models. The approach dramatically increases optimizer stability and improves peak performance without sacrificing computation efficiency.

AI Machine Learning & Data Science Popular Research

ETH Zürich Identifies Priors That Boost Bayesian Deep Learning Models

A research team from ETH Zürich presents an overview of priors for (deep) Gaussian processes, variational autoencoders and Bayesian neural networks. The researchers propose that well-chosen priors can achieve theoretical and empirical properties such as uncertainty estimation, model selection and optimal decision support; and provide guidance on how to choose them.

AI Machine Learning & Data Science Popular Research

Bronstein, Bruna, Cohen and Velickovic Leverage the Erlangen Programme to Establish the Geometric Foundations of Deep Learning

Twitter Chief Scientist Michael Bronstein, Joan Bruna from New York University, Taco Cohen from Qualcomm AI and Petar Veličković from DeepMind publish a paper that aims to geometrically unify the typical architectures of CNNs, GNNs, LSTMs, Transformers, etc. from the perspective of symmetry and invariance to build an “Erlangen Programme” for deep neural networks.

AI Machine Learning & Data Science Popular Research

Toward a New Generation of Neuromorphic Computing: IBM & ETH Zurich’s Biologically Inspired Optimizer Boosts FCNN and SNN Training

IBM and ETH Zurich researchers make progress in reconciling neurophysiological insights with machine intelligence, proposing a novel biologically inspired optimizer for artificial (ANNs) and spiking neural networks (SNNs) that incorporates synaptic integration principles from biology. GRAPES (Group Responsibility for Adjusting the Propagation of Error Signals) leads to improvements in the training time convergence, accuracy and scalability of ANNs and SNNs.

AI Machine Learning & Data Science Popular Research

NVIDIA, Stanford & Microsoft Propose Efficient Trillion-Parameter Language Model Training on GPU Clusters

A research team from NVIDIA, Stanford University and Microsoft Research propose a novel pipeline parallelism approach that improves throughput by more than 10 percent with a comparable memory footprint, showing such strategies can achieve high aggregate throughput while training models with up to a trillion parameters.