Category: Nature Language Tech

AI Machine Learning & Data Science Nature Language Tech Research

WMT21 | Detailing WeChat AI & Beijing Jiaotong University’s NMT System Architecture

On August 5, WeChat AI and Beijing Jiaotong University system developers released the paper WeChat Neural Machine Translation Systems for WMT21, revealing the architecture of their novel neural machine translation (NMT) system and the strategies they adopted to achieve impressive performance in the WMT21 competition.

AI Machine Learning & Data Science Nature Language Tech Research

Google’s H-Transformer-1D: Fast One-Dimensional Hierarchical Attention With Linear Complexity for Long Sequence Processing

A Google Research team draws inspiration from two numerical analysis methods — Hierarchical Matrix (H-Matrix) and Multigrid — to address the quadratic complexity problem of attention mechanisms in transformer architectures, proposing a hierarchical attention scheme that has linear complexity in run time and memory.

AI Machine Learning & Data Science Nature Language Tech Research

Melbourne U, Facebook & Twitter Expose Novel Numerical Errors in NMT Systems

A research team from the University of Melbourne, Facebook AI, and Twitter Cortex proposes a black-box test method for assessing and debugging the numerical translation of neural machine translation systems in a systematic manner. The approach reveals novel types of errors that are general across multiple state-of-the-art translation systems.

AI Machine Learning & Data Science Nature Language Tech Research

ACL 2021 Best Paper: Finding the Optimal Vocabulary for Machine Translation via an Optimal Transport Approach

A research team from ByteDance AI Lab, University of Wisconsin–Madison and Nanjing University wins the ACL 2021 best paper award. Their proposed Vocabulary Learning via Optimal Transport (VOLT) approach leverages optimal transport to automatically find an optimal vocabulary without trial training.

AI Machine Learning & Data Science Nature Language Tech Research

Google Researchers Merge Pretrained Teacher LMs Into a Single Multilingual Student LM Via Knowledge Distillation

A Google Research team proposes MergeDistill, a framework for merging pretrained teacher LMs from multiple monolingual/multilingual LMs into a single multilingual task-agnostic student LM to leverage the capabilities of the powerful language-specific LMs while still being multilingual and enabling positive language transfer.

AI Machine Learning & Data Science Nature Language Tech Research

Study Shows Transformers Possess the Compositionality Power for Mathematical Reasoning

A research team from UC Davis, Microsoft Research and Johns Hopkins University extends work on training massive amounts of linguistic data to reveal the grammatical structures in their representations to the domain of mathematical reasoning, showing that both the standard transformer and the TP-Transformer can compose the meanings of mathematical symbols based on their structured relationships.