AI AI Weekly Technology

Do Human Gamers Stand a Chance Against Trash-Talking AI Bots?

Synced Global AI Weekly November 24th

Subscribe to Synced Global AI Weekly


Discouraging Words from Machines Impair Human Game Play
A new CMU study shows that people who played a game with a humanoid robot known as Pepper performed worse when the robot discouraged them and better when it encouraged them. “This is one of the first studies of human-robot interaction in an environment where they are not cooperating,” said co-author Fei Fang, an assistant professor in the Institute for Software Research.
(Carnegie Mellon University)


Bot Can Beat Humans in Multiplayer Hidden-Role Games
MIT researchers have developed a bot, DeepRole, equipped with artificial intelligence that can beat human players in tricky online multiplayer games where player roles and motives are kept secret. At the Conference on Neural Information Processing Systems next month, the researchers will present DeepRole.
(MIT)


Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
In this work, researchers present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics.
(DeepMind & University College London)

Technology

The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design
This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore’s Law-era.
(Google Research)


Benchmarking Safe Exploration in Deep Reinforcement Learning
OpenAI has released Safety Gym, a suite of environments and tools for measuring progress towards reinforcement learning agents that respect safety constraints while training. They also provide a standardized method of comparing algorithms and how well they avoid costly mistakes while learning.
(OpenAI) / (OpenAI Blog)


RandAugment: Practical Automated Data Augmentation with A Reduced Search Space
RandAugment has a significantly reduced search space which allows it to be trained on the target task with no need for a separate proxy task. Furthermore, due to the parameterization, the regularization strength may be tailored to different model and dataset sizes.
(Google Brain)

You May Also Like

Google Brain’s Hugo Larochelle on Few-Shot Learning
“Few-shot learning is the problem of learning new tasks from little amounts of labeled data. This topic has gained tremendous interest in the past few years, with several new methods being proposed each month,” Google Brain Group in Montréal Lead Hugo Larochelle said in his keynote at the recent RE•WORK Deep Learning Summit in Montréal.
(Synced)


Huawei Tops ETH Zurich 2019 Smartphone Deep Learning Rankings
Huawei took 6 of the top 10 spots for AI-ready smartphones, with the Mate 30 Pro 5G and Mate 30 Pro nearly doubling the scores of other top 10 finishers. “Right now, Huawei devices with the Kirin 990 5G SoC can run floating-point neural networks up to four times faster than phones with other chipsets, thus they are getting a significantly higher total AI score,” Ignatov said.
(Synced)

Global AI Events

December 2-6: AWS re:Invent 2019 in Las Vegas, United States

December 8-14: 2019 Conference on Neural Information Processing Systems (NeurIPS 2019) in Vancouver, Canada

January 7-10: CES 2020 in Las Vegas, United States

February 7-12: AAAI 2020 in New York, United States

Global AI Opportunities

Alan Turing Institute Safe and Ethical AI Research Fellow/Fellow

OpenAI Scholars Spring 2020

Research Scientist, Google Brain Toronto

OpenAI Seeking Software Engineers and Deep Learning Researchers

DeepMind is Recruiting

DeepMind Scholarship: Access to Science

Postdoctoral Researcher (AI) — Self-Supervised Learning

LANDING AI is recruiting


Stay tight with AI!
Subscribe to Synced Global AI Weekly

5 comments on “Do Human Gamers Stand a Chance Against Trash-Talking AI Bots?

  1. Pingback: Do Human Gamers Stand a Chance Against Trash-Talking AI Bots? – Bitfirm.co

  2. Pingback: Do Human Gamers Stand a Chance Against Trash-Talking AI Bots? – NewsChest Technology

  3. Thank you so much for this post

  4. Merci pour cet article

  5. It’s worth reading Your .

Leave a Reply

Your email address will not be published.

%d bloggers like this: