Tag: GPT

AI Machine Learning & Data Science Research

Meta AI’s Shepherd Criticize Language Model Outputs to Crash Hallucinations

In a new paper Shepherd: A Critic for Language Model Generation, a Meta AI research team presents Shepherd, a language model that are explicitly tuned to critique model generated outputs as well as to generate feedbacks to suggest improvements on solving the factuality, logical errors, coherence, and alignment issues.

AI Machine Learning & Data Science Nature Language Tech Research

Microsoft’s new Pareto Optimal Self-Supervision Framework Automatically Corrects Language Models to Boost GPT SOTA Records

In a new paper Automatic Calibration and Error Correction for Large Language Models via Pareto Optimal Self-Supervision, a Microsoft team research team presents Pareto optimal self-supervision, a flexible framework that leverages programmatic supervision to automatically calibrate and correct error for Large language models without extra manual efforts.

AI Machine Learning & Data Science Nature Language Tech Research

OpenAI, Open Research & UPenn Paper Considers How GPTs Will Impact the US Labour Market

In the new paper GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models, a research team from OpenAI, OpenResearch, and the University of Pennsylvania investigates the potential impact of LLMs like GPT on the US labour market, shedding light on the economic, social, and policy implications.

AI Machine Learning & Data Science Research

Introducing SpikeGPT: UCSC & Kuaishou’s LLM With Spiking Neural Networks Slashes Language Generation Costs

In the new paper SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks, a research team from the University of California and Kuaishou Technology presents SpikeGPT, the first generative spiking neural network language model. The team’s largest, 260M parameter version achieves DNN-level performance while maintaining the energy efficiency of spike-based computations.

AI Machine Learning & Data Science Nature Language Tech Popular Research

MIT, Northeastern & Technion Propose ROME for Efficient Locating and Editing of Factual Associations in GPT Models

In the new paper Locating and Editing Factual Associations in GPT, a research team from MIT CSAIL, Northeastern University and Technion IIT examines how information flows during knowledge recall in large autoregressive transformers and introduces Rank-One Model Editing (ROME), a simple, zero-shot principled model editor capable of locating and editing factual associations in such models.