Tag: zero-shot learning

AI Machine Learning & Data Science Nature Language Tech Research

Tokyo U & Google Brain Train Large Language Models as Zero-Shot Reasoners

In the new paper Large Language Models are Zero-Shot Reasoners, a research team from the University of Tokyo and Google Brain demonstrates that large language models (LLMs) can become good zero-shot reasoners through the addition of a simple prompt — “Let’s think step by step” — that elicits a step-by-step thinking process before each question is answered. Their Zero-shot-CoT model achieves huge performance gains compared to the zero-shot baseline.

AI Machine Learning & Data Science Research

Google Builds Language Models with Socratic Dialogue to Improve Zero-Shot Multimodal Reasoning Capabilities

In the new paper Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language, Google researchers argue that the diversity of different foundation models is symbiotic and that it is possible to build a framework that uses structured Socratic dialogue between pre-existing foundation models to formulate new multimodal tasks as a guided exchange between the models without additional finetuning.