Tag: transfer learning

AI Machine Learning & Data Science Research

Huawei’s DiffFit Unlocks the Transferability of Large Diffusion Models to New Domains

In the new paper DiffFit: Unlocking Transferability of Large Diffusion Models via Simple Parameter-Efficient Fine-Tuning, a Huawei Noah’s Ark Lab research team introduces DiffFit, a parameter-efficient fine-tuning technique that enables fast adaptation to new domains for diffusion image generation. Compared to full fine-tuning approaches, DiffFit achieves 2x training speed-ups while using only ~0.12 percent of trainable parameters.

AI Machine Learning & Data Science Research

DeepMind’s Model-Based Offline Options Framework Supports Automatic Skill & Behaviour Discovery, Boosts Transfer Capabilities

In the new paper MO2: Model-Based Offline Options, a DeepMind research team introduces Model-Based Offline Options (MO2), an offline hindsight bottleneck options framework that supports sample-efficient option discovery over continuous state-action spaces for efficient skill transfer to new tasks.

AI Machine Learning & Data Science Research

Facebook Transfer Learning Method Boosts Code Autocompletion Accuracy by Over 50%

A research team from Facebook shows how the power of transfer learning can enable pretraining on non-IDE, non-autocompletion and different-language example code sequences before fine-tuning on the autocompletion prediction task to improve model accuracy by over 50 percent on very small fine-tuning datasets and over 10 percent on 50k labelled examples.