Toward Self-Improving Neural Networks: Schmidhuber Team’s Scalable Self-Referential Weight Matrix Learns to Modify Itself
In the new paper A Modern Self-Referential Weight Matrix That Learns to Modify Itself, a research team from The Swiss AI Lab, IDSIA, University of Lugano (USI) & SUPSI, and King Abdullah University of Science and Technology (KAUST) presents a scalable self-referential weight matrix (SRWM) that leverages outer products and the delta update rule to update and improve itself.