Machine Learning & Data Science Popular

DeepMind Introduces Algorithms for Causal Reasoning in Probability Trees

Probability trees may have been around for decades, but they have received little attention from the AI and ML community.

Are you a cutting-edge AI researcher looking for models with clean semantics that can represent the context-specific causal dependencies necessary for causal induction? If so, maybe you should take a look at good old-fashioned probability trees.

Probability trees may have been around for decades, but they have received little attention from the AI and ML community. Until now. “Probability trees are one of the simplest models of causal generative processes,” explains the new DeepMind paper Algorithms for Causal Reasoning in Probability Trees, which the authors say is the first to propose concrete algorithms for causal reasoning in discrete probability trees.

image.png

Humans naturally learn to reason in large part through inducing causal relationships from our observations, and we do this remarkably well, cognitive scientists say. Even when the data we perceive is sparse and limited, humans can quickly learn causal structures such as interactions between physical objects, observations of the co-occurrence frequencies between causes and effects, etc.

Causal induction is also a classic problem in statistics and machine learning. Although models such as causal Bayesian networks (CBNs) can describe the causal dependencies for causal induction, they cannot represent context-specific independencies. DeepMind team says their proposed algorithms cover the entire causal hierarchy and operate on arbitrary propositional and causal events, expanding causal reasoning to “a very general class of discrete stochastic processes.”

image.png
image.png

The DeepMind team focused their research on finite probability trees and produced concrete algorithms for:

  • computing minimal representations of arbitrary events formed through propositional calculus and causal precedences
  • computing the three fundamental operations of the causal hierarchy — conditions, interventions, and counterfactuals

The paper Algorithms for Causal Reasoning in Probability Trees is on arXiv, and an interactive tutorial is available on GitHub.


Reporter: Fangyu Cai | Editor: Michael Sarazen


B4.png

Synced Report | A Survey of China’s Artificial Intelligence Solutions in Response to the COVID-19 Pandemic — 87 Case Studies from 700+ AI Vendors

This report offers a look at how China has leveraged artificial intelligence technologies in the battle against COVID-19. It is also available on Amazon KindleAlong with this report, we also introduced a database covering additional 1428 artificial intelligence solutions from 12 pandemic scenarios.

Click here to find more reports from us.


AI Weekly.png

We know you don’t want to miss any news or research breakthroughs. Subscribe to our popular newsletter Synced Global AI Weekly to get weekly AI updates.

%d bloggers like this: