Category: Interview

AI Interview

Google Brain Simplifies Network Learning Dynamics Characterization Under Gradient Descent

Machine learning models based on deep neural networks have achieved unprecedented performance on many tasks. These models are generally considered to be complex systems and difficult to analyze theoretically. Also, since it’s usually a high-dimensional non-convex loss surface which governs the optimization process, it is very challenging to describe the gradient-based dynamics of these models during training.

AI Interview

Oxford University AI Policy Researcher Says Trump’s AI Initiative Falls Short on Immigration and Ethics Issues

Last Monday US President Donald Trump signed the “American AI Initiative,” an executive order designed to spur US investment in artificial intelligence and boost the domestic AI industry. The initiative has five highlights: Investing in AI Research and Development (R&D), Unleashing AI Resources, Setting AI Governance Standards, Building the AI Workforce, International Engagement and Protecting our AI Advantage.

AI Interview

Google Brain Research Scientist Quoc Le on AutoML and More

The Synced Lunar New Year Project is a series of interviews with AI experts reflecting on AI development in 2018 and looking ahead to 2019. In this second installment (click here to read the previous article on Clarifai CEO Matt Zeiler), Synced speaks with Google Brain Researcher Quoc Le on his latest invention, AutoML, Google Brain’s pursuit of AI, and the secret of transforming lab technologies into real practices.

AI Interview

David vs Goliath: Clarifai CEO Matt Zeiler Takes On the Tech Giants

This is the first installment of the Synced Lunar New Year Project, a series of interviews with AI experts reflecting on AI development in 2018 and looking ahead to 2019. In this article, Synced chats with Clarifai Founder and CEO Matt Zeiler on recent progress in computer vision and his company’s plans for the future. Founded in New York in 2013, Clarifai produces advanced image recognition systems.

AI Interview

NeurIPS 2018 Best Paper Team: “Math Is Forever”

In an exclusive interview with Synced at NeurIPS, members of the University of Toronto and Vector Institute team led by Assistant Professor David Duvenaud discussed their winning submission Neural Ordinary Differential Equations — a math-based approach to designing deep learning models that is stimulating discussion across the machine learning community.